Lesson 27b. Triple Integrals, cont.

1 Last time...

Rectangular boxes

$\iiint_{B} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x$

Type A 3D regions

$\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A$

Example 1. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the solid tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$.

2 Integrating over other types of 3D regions

- Type B 3D region: between two continuous functions of y and z

Example 2. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$. Consider E as a type B region.

- Type C 3D region: between two continuous functions of x and z

Example 3. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$. Consider E as a type C region.

3 If we have time..

Example 4. Express $\iiint_{E} \sin (x+y z) d V$ as an iterated integral, where E lies below the surface $z=1+x^{2}+4 y^{2}$ and above the region in the $x y$-plane bounded by the curves $x=2 y, x=0$, and $y=1$.

