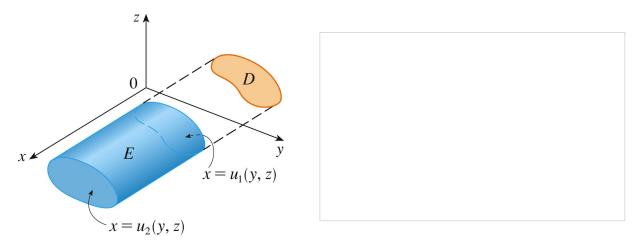

Lesson 27b. Triple Integrals, cont.

Type A 3D regions

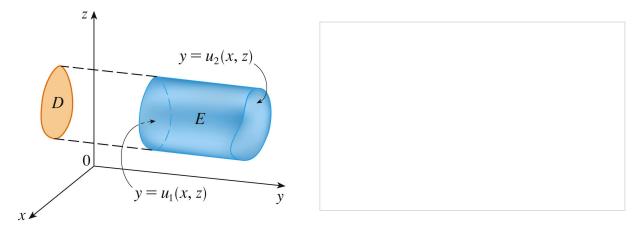
1 Last time...

Rectangular boxes



Example 1. Express $\iiint_E y\sqrt{z} \, dV$ as an iterated integral, where *E* is the solid tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4.

1


2 Integrating over other types of 3D regions

• Type B 3D region: between two continuous functions of *y* and *z*

Example 2. Express $\iiint_E y \sqrt{z} \, dV$ as an iterated integral, where *E* is the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4. Consider *E* as a type B region.

• Type C 3D region: between two continuous functions of *x* and *z*

Example 3. Express $\iiint_E y\sqrt{z} \, dV$ as an iterated integral, where *E* is the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4. Consider *E* as a type C region.

3 If we have time...

Example 4. Express $\iiint_E \sin(x + yz) dV$ as an iterated integral, where *E* lies below the surface $z = 1 + x^2 + 4y^2$ and above the region in the *xy*-plane bounded by the curves x = 2y, x = 0, and y = 1.